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Abstract

This paper is concerned with the study of the spatial behavior of the processes associated with a mixture consisting of

three components: an elastic solid, a viscous fluid and a gas. An appropriate time-weighted surface power function is

used in order to describe the spatial behavior of the processes in question. Spatial estimates of Saint–Venant type (for

bounded bodies) and Phragm�een–Lindel€oof type (for unbounded bodies) with time-dependent and time-independent rates

are established. For unbounded bodies the asymptotic spatial behavior of the processes is also studied by means of an

appropriate volumetric measure.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The continuum theory of mixtures are extensively studied in literature. A presentation of the work on the
subject can be found in review articles by Bowen (1976), Atkin and Craine (1976a,b), and Bedford and
Drumheller (1983).

Eringen (1994) pointed out the importance of the theory of mixtures to the applied field of swelling. In
this connection Eringen (1994) has developed a continuum theory of swelling porous elastic soils as a
continuum theory of mixture for porous elastic solids filled with fluid and gas. The theory provides a
fundamental basis for the treatment of various practical problems in the field of swelling, oil exploration,
slurries and consolidation problems. The theory is relevant to problems in the oil exploration industry,
since oil is viscous and is usually accompanied by gas in underground rocks, porous solid in slurries and
muddy river beds.

In the context of theory of swelling porous elastic soils some continuous dependence and uniqueness
results have been established by Gales� (2002).
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This article is concerned with the study of spatial behavior in the isothermal linear theory of swelling
porous elastic soils.

The study of spatial decay and growth of solutions of time-dependent problems is of relatively recent
origin (see e.g. Edelstein, 1969; Knowles, 1971; Flavin and Knops, 1987; Ies�an and Quintanilla, 1995;
Chirit��aa and Ciarletta, 1999; Chirit��aa and Scalia, 2001 and the references cited by Horgan and Knowles,
1983; Horgan, 1989). Chirit��aa and Ciarletta (1999) were presented a method for the study of spatial be-
havior in dynamics of continua. The method is based on a set of properties for an appropriate time-
weighted surface power function associated with the dynamic processes. In linear elastodynamics and
viscoelastodynamics, there are obtained spatial decay estimates with time-independent decay rate inside of
the domain of influence, while for models which implies the presence of a dissipation energy (see also
Chirit��aa and Danescu, 2000; Chirit��aa and Scalia, 2001), there are obtained spatial estimates characterized by
independent as well as time-dependent decay and growth rates.

Our analysis in the present paper is based on the results obtained by Chirit��aa and Ciarletta (1999) and
Chirit��aa and Scalia (2001). Since for the model in question there exist a dissipation energy we obtain spatial
decay and growth estimates characterized by independent and time-dependent rates. Thus, for bounded
bodies we establish spatial decay estimates of Saint–Venant type, while for unbounded bodies we establish
some alternatives of Phragm�een–Lindel€oof type. We also outline a class of mixtures for which we can improve
the spatial decay estimates by studying the asymptotic behavior of the processes by means of an appro-
priate volumetric measure. A similar measure has been used by Scalia (2002) to study the asymptotic spatial
behavior in linear thermoelasticity of materials with voids. The results are obtained under positive defi-
niteness assumption upon the internal energy density.

The plan of the paper is as follows: In Section 2 we set down the basic equations and we discuss some
restrictions upon the constitutive coefficients. Section 3 contains the derivation of some general properties
of an appropriate time-weighted surface power function associated with the mixture and some results that
describe the spatial behavior of processes for bounded and unbounded bodies. Section 4 examines the
asymptotic spatial behavior of processes.

2. Basic equation––some preliminary results

We refer the motion of a continuum to a fixed system of rectangular Cartesian axes 0xk (k ¼ 1, 2, 3). We
shall employ the usual summation and differentiation conventions: Latin subscripts are understood to
range over integer (1, 2, 3), summation over repeated subscripts is implied, subscripts preceded by a comma
denote partial differentiation with respect to the corresponding Cartesian coordinate, and a superposed dot
denotes time differentiation.

We consider a body that at time t ¼ 0 occupies the bounded or unbounded regular region B of Euclidean
three-dimensional space whose boundary is the regular surface oB.

We assume that B is occupied by a mixture consisting of three components: an elastic solid, a viscous
fluid and a gas. We use superscripts s, f, g to denote respectively, the elastic solid, the fluid and the gas. Let
qs

0, qf
0 and qg

0 denote the densities at time t ¼ 0 of the three constituents, respectively. We consider the
fundamental equations for mechanical behavior of the mixture in the framework of the linearized theory
(see Eringen, 1994; Gales�, 2002). Thus, the equations of motion are

tsji;j þ qs
0f

s
i þ pf

i þ pg
i ¼ qs

0€uu
s
i ;

tfji;j þ qf
0f

f
i � pf

i ¼ qf
0€uu

f
i ;

tgji;j þ qg
0f

g
i � pg

i ¼ qg
0€uu

g
i ; in B � ½0;1Þ;

ð1Þ

where tsij, tfij and tgij are the partial stress tensors, f s
i , f f

i and f g
i are the body forces, us

i , uf
i and ug

i are the
displacement vector fields, and pf

i and pg
i are the internal body forces.

4152 C. Gales� / International Journal of Solids and Structures 39 (2002) 4151–4165



The constitutive equations for a homogeneous and isotropic mixture are

tsij ¼
 

�
X
a¼f;g

raea
rr þ kes

rr

!
dij þ 2les

ij;

tfij ¼
 

� rfes
rr �

X
a¼f ;g

rfaea
rr þ km _eef

rr

!
dij þ 2lm _ee

f
ij;

tgij ¼
 

� rges
rr �

X
a¼f;g

rgaea
rr

!
dij;

pa
i ¼

X
b¼f;g

nabð _uub
i � _uus

i Þ; a ¼ f ; g in B � ½0;1Þ;

ð2Þ

where ra (a ¼ f ; g), k, l, rab (a; b ¼ f ; g), km, lm, nab (a; b ¼ f ; g) are constitutive constants; dij is the Kro-
necker delta; and es

ij, ef
ij and eg

ij are defined by

es
ij ¼ 1

2
ðus

i;j þ us
j;iÞ;

ef
ij ¼ 1

2
ðuf

i;j þ uf
j;iÞ;

eg
ij ¼ 1

2
ðug

i;j þ ug
j;iÞ; in B � ½0;1Þ:

ð3Þ

The coefficients in (2) have the following symmetries:

rab ¼ rba; nab ¼ nba; a; b ¼ f ; g: ð4Þ
Let M and N be non-negative integers. We say that h is of class CM ;N on B � ½0;1Þ if h is continuous on
B � ½0;1Þ, and the functions

om

oxioxj 	 	 	 oxr

onh
otn

� �
; m 2 f0; 1; . . . ;Mg; n 2 f0; 1; . . . ;Ng; m þ n6 maxfM ;Ng;

exist and are continuous on B � ½0;1Þ. We denote CM ;M by CM .
Throughout this paper by an admissible process we mean the ordered array P ¼ fus; uf ; ug; es; ef ; eg; ts;

tf ; tg; pf ; pgg with the properties

(a) us
i , uf

i , ug
i are of class C1;2 on B � ½0;1Þ;

(b) the symmetric fields es
ij, ef

ij, eg
ij are of class C0;1 on B � ½0;1Þ;

(c) the symmetric fields tsij, tfij, tgij are of class C1;0 on B � ½0;1Þ;
(d) pf

i , pg
i are of class C0 on B � ½0;1Þ.

Further, we say that P ¼ fus; uf ; ug; es; ef ; eg; ts; tf ; tg; pf ; pgg is a dynamic process for the mixture
corresponding to body forces fs, ff and fg if P is an admissible process and satisfies the basic equations (1)–
(3). To the dynamic process P we associate the surface tractions sa

i (a ¼ s; f ; g) defined at every regular
point of a boundary surface by

sa
i ðx; tÞ ¼ tajiðx; tÞnjðxÞ; a ¼ s; f ; g; ð5Þ

where nj are the components of the outward unit normal vector to the boundary surface of a region. We call
the array F ¼ ffs; ff ; fg; ss; sf ; sgg the external force system for P.

As it was shown by Eringen (1994), the local form of the Clausius–Duhem inequality implies

3km þ 2lm P 0; lm P 0; ð6Þ
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and the positive semi-definiteness of the following symmetric matrix:

D ¼ nff nfg

nfg ngg

� �
; ð7Þ

so that the dissipation energy density U, corresponding to the displacement vectors u ¼ ½us; uf ; ug
 and
defined by

UðuÞ ¼ km _eef
iiðuÞ _eef

jjðuÞ þ 2lm _ee
f
ijðuÞ _eef

ijðuÞ þ
X

a;b¼f;g

nabð _uua
i � _uus

i Þð _uub
i � _uus

i Þ; ð8Þ

is non-negative.
The internal energy density E corresponding to the displacement vectors u ¼ ½us; uf ; ug
 is defined by

E ¼ 1

2
kes

iiðuÞes
jjðuÞ þ les

ijðuÞes
ijðuÞ �

X
a¼f ;g

raea
iiðuÞes

jjðuÞ �
1

2

X
a;b¼f ;g

rabea
iiðuÞeb

jjðuÞ: ð9Þ

Throughout this paper we shall assume that the following symmetric matrix is positive definite:

d ¼

k þ 2l k k 0 0 0 �rf �rg

k k þ 2l k 0 0 0 �rf �rg

k k k þ 2l 0 0 0 �rf �rg

0 0 0 2l 0 0 0 0

0 0 0 0 2l 0 0 0

0 0 0 0 0 2l 0 0

�rf �rf �rf 0 0 0 �rff �rfg

�rg �rg �rg 0 0 0 �rfg �rgg

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
: ð10Þ

Thus, the internal energy density EðuÞ is a positive definite quadratic form in terms of es
ijðuÞ, ef

iiðuÞ and
eg

iiðuÞ. Then, we have

kes
iie

s
jj þ 2les

ije
s
ij � 2

X
a¼f ;g

raea
iie

s
jj �

X
a;b¼f ;g

rabea
iie

b
jj 6 rMðes

ije
s
ij þ ef

ije
f
ij þ eg

ije
g
ijÞ; ð11Þ

where

rM ¼ 3dM; ð12Þ
and dM is the largest eigenvalue of the matrix d. In order to get the relation (11) we have been used the
relation

ea
iiðuÞea

jjðuÞ6 3ea
ijðuÞea

ijðuÞ; a ¼ f ; g: ð13Þ

Lemma 1. Let P be an admissible process for the mixture satisfying the constitutive equations (2). Then, for
every positive �1 we haveX

a¼s;f ;g

taijðuÞtaijðuÞ6 2ð1 þ �1ÞrMEðuÞ þ 1

�
þ 1

�1

�
lm

M km _eef
iiðuÞ _eef

jjðuÞ
h

þ 2lm _ee
f
ijðuÞ _eef

ijðuÞ
i
; ð14Þ

where

lm
M ¼ maxf2lm; 3km þ 2lmg: ð15Þ
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Proof. From the relations (2)–(4), (6), (10) and (11) we deduceX
a¼s;f ;g

taijðuÞtaijðuÞ ¼ kes
iiðuÞtsjjðuÞ þ 2les

ijðuÞtsijðuÞ �
X
a¼f ;g

raea
iiðuÞtsjjðuÞ �

X
a¼f;g

raes
iiðuÞtajjðuÞ �

X
a¼f ;g

rabea
iiðuÞtbjjðuÞ

þ km _eef
iiðuÞtfjjðuÞ þ 2lm _ee

f
ijðuÞtfijðuÞ6 kes

iiðuÞes
jjðuÞ

"
þ 2les

ijðuÞes
ijðuÞ � 2

X
a¼f;g

raea
iiðuÞes

jjðuÞ

�
X

a;b¼f ;g

rabea
iiðuÞeb

jjðuÞ
#1=2

rM tsijðuÞtsijðuÞ
�h

þ tfijðuÞtfijðuÞ þ tgijðuÞtgijðuÞ
�i1=2

þ km _eef
iiðuÞ _eef

jjðuÞ
h

þ 2lm _ee
f
ijðuÞ _eef

ijðuÞ
i1=2

lm
MtfijðuÞtfijðuÞ

h i1=2

; ð16Þ

so that, by (9), we getX
a¼s;f ;g

taijðuÞtaijðuÞ6 2rMEðuÞ½ 
1=2

�
þ lm

M km _eef
iiðuÞ _eef

jjðuÞ
�h

þ 2lm _ee
f
ijðuÞ _eef

ijðuÞ
�i1=2

�2

: ð17Þ

Using the arithmetic–geometric mean inequality

a1a2 6
�1

2
a2

1 þ
1

2�1

a2
2; ð18Þ

which holds for every �1 > 0 and every a1 and a2, we obtain the relation (14) and the proof is complete. �

By using the fact that the symmetric matrix D is positive semi-definite, we obtain the following:

Corollary 1. If P is an admissible process for the mixture satisfying the constitutive equation (2), then for
every positive �1, we haveX

a¼s;f ;g

sa
i s

a
i 6 2ð1 þ �1ÞrMEðuÞ þ 1

�
þ 1

�1

�
lm

MUðuÞ: ð19Þ

3. Spatial behavior for bounded and unbounded bodies

In this section we establish some estimates describing spatial decay and growth properties for dynamic
processes associated with the mixture. We define and establish some properties of the time-weighted surface
power function associated with the dynamic process P, then we derive the mentioned results.

We consider a given time interval ½0; T 
, T 2 ½0;1Þ. Given the dynamic process P, corresponding to the
external force system F, we introduce the set bDDT of all points in B so that:

(i) if x 2 B then

ua
i ðx; 0Þ 6¼ 0 or _uua

i ðx; 0Þ 6¼ 0 for some a 2 fs; f ; gg; ð20Þ
or

f s
i ðx; sÞ 6¼ 0 or f f

i ðx; sÞ 6¼ 0 or f g
i ðx; sÞ 6¼ 0 for some s 2 ½0; T 
; ð21Þ

(ii) if x 2 oB thenX
a¼s;f;g

sa
i ðx; sÞ _uua

i ðx; sÞ 6¼ 0 for some s 2 ½0; T 
: ð22Þ
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Roughly speaking, bDDT represents the support of the initial and boundary data and the body forces on the
time interval ½0; T 
. If the region B is unbounded, then we will assume that bDDT is a bounded region.

We consider next a nonempty set bDDH

T of B such that bDDT � bDDH

T � B and

(1) If bDDT \ B 6¼ ;, we choose bDDH

T to be the smallest regular region in B that includes bDDT ; in particular, we setbDDH

T ¼ bDDT if bDDT happens to be a regular region;
(2) If ; 6¼ bDDT � oB, we choose bDDH

T to be the smallest regular subsurface of oB that includes bDDT ; in partic-
ular, we set bDDH

T ¼ bDDT if bDDT is a regular subsurface of oB;
(3) If bDDT is empty, then we choose bDDH

T to be an arbitrary regular subsurface of oB.

On this basis we introduce the set Dr, r P 0 by

Dr ¼ x 2 B; bDDH

T \ Rðx; rÞ
n

6¼ ;
o
; ð23Þ

where Rðx; rÞ is the open ball with radius r and center x. We shall use the notation Br for the part of B
contained in B n Dr and we set Bðr1; r2Þ ¼ Br2

n Br1
, r1 > r2. Moreover, we shall denote by Sr the subsurface

of oBr contained into inside of B and whose outward unit normal vector is forwarded to the exterior of Dr.
We note that for a bounded body r ranges over ½0; L
, where

L ¼ maxfminf½ðxi � yiÞðxi � yiÞ
1=2
: y 2 bDDH

T g : x 2 Bg: ð24Þ

We associate with the dynamic process P the following time-weighted surface power function Qðr; tÞ
defined by

Qðr; tÞ ¼ �
Z t

0

Z
Sr

e�cz
X

a¼s;f ;g

sa
i ðzÞ _uua

i ðzÞdadz; r P 0; t 2 ½0; T 
; ð25Þ

where sa
i , a ¼ s, f, g are defined by the relation (5) and c is a prescribed positive parameter. Further, we

introduce, for later convenience, the notation

eQQðr; tÞ ¼
Z t

0

Qðr; zÞdz: ð26Þ

The next theorem shows a set of properties of the time-weighted surface power function that are useful in
the study of the spatial behavior of the dynamic processes. The results give rise to counterparts of the
thermoelastic versions established by Chirit��aa and Ciarletta (1999).

Theorem 1 (Properties of the time-weighted surface power function Q). Let P ¼ fus; uf ; ug; es; ef ; eg; ts; tf ;
tg; pf ; pgg be a dynamic process for the mixture on B corresponding to the external force systemF and let bDDT

be the bounded support of the corresponding data on the time interval ½0; T 
. Then the time-weighted surface
power function Qðr; tÞ has the following properties:

(Q1) For each t 2 ½0; T 
 and 06 r2 6 r1

Qðr1; tÞ � Qðr2; tÞ ¼ �
Z

Bðr1;r2Þ
e�ct 1

2

X
a¼s;f;g

qa
0 _uu

a
i ðtÞ _uua

i ðtÞ
"

þ EðuðtÞÞ
#

dv

�
Z t

0

Z
Bðr1;r2Þ

e�cz c
1

2

X
a¼s;f;g

qa
0 _uu

a
i ðzÞ _uua

i ðzÞ
"(

þ EðuðzÞÞ
#
þ UðuðzÞÞ

)
dvdz; ð27Þ
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(Q2) Qðr; tÞ is a continuous differentiable function on r P 0, t 2 ½0; T 
, and

o

or
Qðr; tÞ ¼ �

Z
Sr

e�ct 1

2

X
a¼s;f;g

qa
0 _uu

a
i ðtÞ _uua

i ðtÞ
"

þ EðuðtÞÞ
#

da

�
Z t

0

Z
Sr

e�cz c
1

2

X
a¼s;f;g

qa
0 _uu

a
i ðzÞ _uua

i ðzÞ
"(

þ EðuðzÞÞ
#
þ UðuðzÞÞ

)
dadz; ð28Þ

(Q3) For each fixed t 2 ½0; T 
, Qðr; tÞ and eQQðr; tÞ are non-increasing functions with respect to r;
(Q4) Qðr; tÞ satisfies the following first-order differential inequality:

c
c
jQðr; tÞj þ o

or
Qðr; tÞ6 0; r P 0; t 2 ½0; T 
; ð29Þ

where

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rM þ clm

M

2q0

s
; q0 ¼ minfqs

0; q
f
0; q

g
0g; ð30Þ

(Q5) eQQðr; tÞ satisfies the following first-order differential inequality:

ffiffi
t

p
kðtÞ o

or
eQQðr; tÞ þ jeQQðr; tÞj6 0; ð31Þ

where

kðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2trM þ lm

M

2q0

s
; ð32Þ

(Q6) If B is a bounded body, then Qðr; tÞ and eQQðr; tÞ are positive functions.

Proof. In view of the relations (2)–(5), (25), the definition of bDDT and the divergence theorem we get

Qðr1; tÞ � Qðr2; tÞ ¼ �
Z t

0

Z
oBðr1;r2Þ

e�cz
X

a¼s;f ;g

sa
i ðzÞ _uua

i ðzÞdadz

¼ �
Z t

0

Z
Bðr1;r2Þ

e�cz
X

a¼s;f ;g

taji;jðzÞ _uua
i ðzÞ

h
þ taijðzÞ _eea

ijðzÞ
i

dvdz: ð33Þ

Further, we use the basic equations (1)–(3) and the relations (8) and (9) in order to obtain

Qðr1; tÞ � Qðr2; tÞ ¼ �
Z t

0

Z
Bðr1;r2Þ

e�cz o

oz
1

2

X
a¼s;f ;g

qa
0 _uu

a
i ðzÞ _uua

i ðzÞ
"(

þ EðuðzÞÞ
#
þ UðuðzÞÞ

)
dvdz; ð34Þ

which by means of an integration by parts and the definition of bDDT leads to the identity (27), and so the part
(Q1) is established.

Part (Q2) and (Q3) follows from the definition of the dynamic process and the property (Q1).
We now establish the property (Q4). On the basis of the Schwarz’s inequality, the arithmetic-geometric

mean inequality (18) and Corollary 1, from (25), we obtain
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jQðr; tÞj6
Z t

0

Z
Sr

e�cz
X

a¼s;f ;g

sa
i ðzÞ _uua

i ðzÞ
�����

�����dadz

6

Z t

0

Z
Sr

e�cz �2

2

X
a¼s;f ;g

qa
0 _uu

a
i ðzÞ _uua

i ðzÞ
"

þ 1

2�2q0

X
a¼s;f ;g

sa
i ðzÞsa

i ðzÞ
#

dadz

6

Z t

0

Z
Sr

e�cz �2

2c

X
a¼s;f ;g

cqa
0 _uu

a
i ðzÞ _uua

i ðzÞ
(

þ 1

2�2q0c
2cð1
�

þ �3ÞrMEðuðzÞÞ

þ c 1

�
þ 1

�3

�
lm

MUðuðzÞÞ
�)

dadz; 8�2 > 0; �3 > 0; ð35Þ

where q0 is defined by the second term of (30)2. Now we equate the coefficients of the various energetic
terms in the last integral in (35), that is, we set

�2

c
¼ ð1 þ �3ÞrM

�2q0c
¼ ð1 þ 1=�3Þlm

M

2�2q0

: ð36Þ

Therefore, we choose for the arbitrary parameters �2 and �3 the following values:

�2 ¼ c; �3 ¼
clm

M

2rM

; ð37Þ

where c is given by the first term of (30)1. With these choices substituted in (35) and by using the relation
(28) we deduce the first-order differential inequality (29).

We consider now the part (Q5). By means of the Schwarz’s inequality and the relationZ t

0

Z z

0

g2ðsÞdsdz6 t
Z t

0

g2ðzÞdz; ð38Þ

from (26), we get

jeQQðr; tÞj ¼
Z t

0

Z z

0

Z
Sr

e�cs
X

a¼s;f ;g

sa
i ðsÞ _uua

i ðsÞdadsdz

�����
�����6 ffiffi

t
p Z t

0

Z
Sr

e�cz
X

a¼s;f ;g

qa
0 _uu

a
i ðzÞ _uua

i ðzÞdadz

 !1=2

�
ffiffi
t

p Z t

0

Z z

0

Z
Sr

e�cs 1

q0

X
a¼s;f;g

sa
i ðsÞsa

i ðsÞdadsdz

 !1=2

:

ð39Þ
Moreover, we use the arithmetic–geometric mean inequality and the Corollary 1 in (39) in order to obtain

jeQQðr; tÞj6
ffiffi
t

p Z t

0

Z
Sr

e�cz �4

2

X
a¼s;f;g

qa
0 _uu

a
i ðzÞ _uua

i ðzÞdadz

(

þ
Z t

0

Z z

0

Z
Sr

e�cs 1

2�4q0

2ð1
�

þ �5ÞrMEðuðsÞÞ þ 1

�
þ 1

�5

�
lm

MUðuðsÞÞ
�

dadsdz

)

6

ffiffi
t

p Z t

0

Z
Sr

e�cz �4

2

X
a¼s;f ;g

qa
0 _uu

a
i ðzÞ _uua

i ðzÞ
"(

þ tð1 þ �5ÞrM

�4q0

EðuðzÞÞ
#

dadz

þ ð1 þ 1=�5Þlm
M

2�4q0

Z t

0

Z z

0

Z
Sr

e�cs UðuðsÞÞ½ 
dadsdz

)
; 8�4 > 0; �5 > 0: ð40Þ
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Then, we equate the coefficients of the various energetic terms in the last inequality of the relation (40), that
is we set

�4 ¼ kðtÞ; �5 ¼
lm

M

2trM

; ð41Þ

where kðtÞ is given by the relation (32). If we combine the inequality (40) with the choices (41) and the
property (Q2) we obtain the estimate (31). Thus, the property (Q5) is established.

We proceed now to establish (Q6). The definition of bDDT together with the relations (24) and (25) then
show that

QðL; tÞ ¼ 0; t 2 ½0; T 
: ð42Þ
The part (Q6) follows now from the relations (26) and (27) by means of the use of the relation (42). Thus,
the proof is complete. �

Theorem 2 (Spatial behavior for bounded bodies). Let P ¼ fus; uf ; ug; es; ef ; eg; ts; tf ; tg; pf ; pgg be a dy-
namic process for the mixture on the bounded regular region B, corresponding to the external force system
F ¼ ffs; ff ; fg; ss; sf ; sgg. Suppose that the external given data have the bounded support bDDT on the time in-
terval ½0; T 
 and let Qðr; tÞ be the time-weighted surface power function associated withP. Then, for each fixed
t 2 ½0; T 
, we have

Qðr; tÞ6Qð0; tÞ exp
�
� c

c
r
�
; r 2 ½0; L
 ð43Þ

and

eQQðr; tÞ6 eQQð0; tÞ exp

�
� 1ffiffi

t
p

kðtÞ
r
�
; r 2 ½0; L
; ð44Þ

where c and kðtÞ are given by (30) and (32), respectively.

Proof. By means of the property (Q6) the relations (29) and (31) can be written in the following form:

o

or
exp

c
c
r

� �
Qðr; tÞ

h i
6 0; r 2 ½0; L
; ð45Þ

o

or
exp

1ffiffi
t

p
kðtÞ

r
� �eQQðr; tÞ

� �
6 0; r 2 ½0;L
: ð46Þ

By an integration with respect to r, we obtain the estimates (43) and (44). Thus, the proof is complete. �

We now consider an unbounded body so that we assume that B is an unbounded regular region. We
derive some results of Phragm�een–Lindel€oof type as it is described in the next theorem.

Theorem 3 (Spatial behavior for unbounded bodies). Let P ¼ fus; uf ; ug; es; ef ; eg; ts; tf ; tg; pf ; pgg be a
dynamic process for the mixture on the unbounded region B, corresponding to the external force system
F ¼ ffs; ff ; fg; ss; sf ; sgg. Suppose that the external given data have the bounded support bDDT on the time in-
terval ½0; T 
 and let Qðr; tÞ be the time-weighted surface power function associated withP. Then, for each fixed
t 2 ½0; T 
, the following alternative holds:

(i) either Qðr; tÞP 0 for all r P 0 and then

Qðr; tÞ6Qð0; tÞ exp
�
� c

c
r
�
; r P 0; ð47Þ

C. Gales� / International Journal of Solids and Structures 39 (2002) 4151–4165 4159



or
(ii) there exists a value rt P 0 so that Qðrt; tÞ < 0 and then Qðr; tÞ < 0 for all r P rt and

�Qðr; tÞP � Qðrt; tÞ exp
c
c
ðr

�
� rtÞ

�
; r P rt: ð48Þ

Proof. Let t be fixed in ½0; T 
. Then it results, from the property (Q3), that we have only the following two
possibilities:

(a) Qðr; tÞP 0 for all r 2 ½0;1Þ;
(b) there exists rt 2 ½0;1Þ such that Qðrt; tÞ < 0.

Let us consider the first possibility; that is, we assume Qðr; tÞP 0 for all r 2 ½0;1Þ. Then the differential
inequality (29) can be written in the form (45) and so we get the estimate (47).

Let us now consider the case (b). Then, we have Qðr; tÞ6Qðrt; tÞ < 0 for all r P rt so that the differential
inequality (29) implies that

� c
c
Qðr; tÞ þ o

or
Qðr; tÞ6 0; r P rt: ð49Þ

Thus, by an integration, from (49), we obtain the estimate (48) and the proof is complete. �

A similar argument with that in the above proves the following theorem:

Theorem 4. Suppose the hypotheses of Theorem 3 hold true. Then, for each t 2 ½0; T 
, either

(i) eQQðr; tÞP 0 for all r P 0 and then

eQQðr; tÞ6 eQQð0; tÞ exp

�
� 1ffiffi

t
p

kðtÞ
r
�
; r P 0; ð50Þ

or
(ii) there exists a value rHt P 0 so that eQQðrHt ; tÞ < 0 and then eQQðr; tÞ < 0 for all r P rHt and

�eQQðr; tÞP � eQQðrHt ; tÞ exp
1ffiffi
t

p
kðtÞ

ðr
�

� rHt Þ
�
; r P rHt : ð51Þ

Remark 1. It is worth to mention that one can obtain a good description for the spatial behavior of dynamic
processes by combining the results described by the estimates (43) and (44) or, alternatively, the estimates
(47) and (50). The decay estimates (44) and (50) are useful for short values of time, while the decay estimates
(43) and (47) give a good description for large values of time.

4. Further asymptotic spatial behavior

In this section we outline a class of mixtures for which we can complete the study of spatial behavior with
some results describing the asymptotic spatial behavior of the processes. In this aim we adopt a volumetric
measure for the processes derived from (25) and then we establish some spatial decay estimates by using
qualitative methods involving second-order partial differential inequalities. The results give rise to coun-
terparts of thermoelastic versions of those established by Horgan et al. (1984) for the transient heat con-
duction and Scalia (2002) for materials with voids.
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We assume that B is a semi-infinite cylinder and we choose the rectangular Cartesian system so that the
generators of the cylinder are parallel with the x3-axis and the end of cylinder is contained in the plane
x3 ¼ �l, l > 0. Further, we suppose that the support of the external given data bDDT is enclosed in the half–
space x3 < 0. Throughout in what follows we assume that

_uuf
i ¼ 0 on ðoB0 � S0Þ � ½0; T 
: ð52Þ

We note that the constitutive equations (2) allow us to write

tfij ¼ ~ttf
ij þ	ttfij; ð53Þ

where

~ttfij ¼ � rfes
rr

 
þ
X
a¼f;g

rfaea
rr

!
dij;

	ttfij ¼ km _eef
rrdij þ 2lm _ee

f
ij: ð54Þ

It is easy to see that the procedure used to obtain the estimate (14) can be applied to obtain the estimateX
a¼s;g

taijðuÞtaijðuÞ þ ~ttfijðuÞ~ttfijðuÞ6 2rMEðuÞ: ð55Þ

Within the above context the time-weighted surface power function Qðr; tÞ defined by the relation (25)
becomes

Qðr; tÞ ¼ �
Z t

0

Z
Sr

e�cz
X
a¼s;g

ta3iðzÞ _uua
i ðzÞ

"
þ ~ttf3iðzÞ _uuf

i ðzÞ
#

dadz

�
Z t

0

Z
Sr

e�cz	ttf3iðzÞ _uuf
i ðzÞdadz; r 2 ½0;1Þ; t 2 ½0; T 
: ð56Þ

By using the relations (52), (54)2 and the divergence theorem, we obtainZ
Sr

	ttf3i _uu
f
i da ¼

Z
Sr

ðkm � lmÞ _uu3 _uuf
q;q da þ 1

2

Z
Sr

lm _uu
f
i _uu

f
i

h�
þ ðkm þ lmÞ _uuf

3 _uu
f
3

i
da
�

3

: ð57Þ

It follows from the relation (57) that in the class of fluids for which

km ¼ lm; ð58Þ
the function Qðr; tÞ can be written as

Qðr; tÞ ¼ �
Z t

0

Z
Sr

e�cz
X
a¼s;g

ta3iðzÞ _uua
i ðzÞ þ ~ttf3iðzÞ _uuf

i ðzÞ
" #

dadz

� lm

2

Z t

0

Z
Sr

e�cz _uuf
i ðzÞ _uuf

i ðzÞ
�(

þ 2 _uuf
3ðzÞ _uuf

3ðzÞ
�

dadz

)
3

: ð59Þ

We denote by M the class of processes P for which Qðr; tÞP 0 for r 2 ½0;1Þ, t 2 ½0; T 
 and (52) is satisfied.
For the processes P residing in the set M it follows by Theorem 3 that the estimate (47) holds true. Thus,
we can introduce the following measure:

Iðr; tÞ ¼
Z 1

r
Qðn; tÞdn; r 2 ½0;1Þ; t 2 ½0; T 
; ð60Þ
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that is

Iðr; tÞ ¼ �
Z t

0

Z
Br

e�cz
X
a¼s;g

ta3iðzÞ _uua
i ðzÞ þ ~ttf3iðzÞ _uuf

i ðzÞ
" #

dvdz

þ lm

2

Z t

0

Z
Sr

e�cz _uuf
i ðzÞ _uuf

i ðzÞ
"

þ 2 _uuf
3ðzÞ _uuf

3ðzÞ
#

dadz: ð61Þ

Lemma 2. Let P 2 M be a dynamic process, associated with a mixture for which km ¼ lm, on the semi–infinite
cylinder B, corresponding to external given dataF. Then, the volumetric measure Iðr; tÞ satisfies the following
second-order partial differential inequality

oI
ot

ðr; tÞ6 � c1

oI
or

ðr; tÞ þ a
o2I
or2

ðr; tÞ; r 2 ½0;1Þ; t 2 ½0; T 
; ð62Þ

where

c1 ¼
ffiffiffiffiffiffi
rM

q0

r
; a ¼ 3lm

qf
0

: ð63Þ

Proof. By a direct differentiation in (61), we deduce that

oI
ot

ðr; tÞ ¼ �
Z

Br

e�ct
X
a¼s;g

ta3iðtÞ _uua
i ðtÞ þ ~ttf

3iðtÞ _uuf
i ðtÞ

" #
dvdz þ lm

2

Z
Sr

e�ct _uuf
i ðtÞ _uuf

i ðtÞ þ 2 _uuf
3ðtÞ _uuf

3ðtÞ
" #

dadz:

ð64Þ
Further, the relation (47) gives

lim
r!1

Qðr; tÞ ¼ 0; ð65Þ

so that, by means of the relations (27), (28), and (60), we obtain

oI
or

ðr; tÞ ¼ �Qðr; tÞ ¼ �
Z

Br

e�ct 1

2

X
a¼s;f ;g

qa
0 _uu

a
i ðtÞ _uua

i ðtÞ
"

þ EðuðtÞÞ
#

dv

�
Z t

0

Z
Br

e�cz c
1

2

X
a¼s;f;g

qa
0 _uu

a
i ðzÞ _uua

i ðzÞ
"(

þ EðuðzÞÞ
#
þ UðuðzÞÞ

)
dvdz; ð66Þ

and

o2I
or2

ðr; tÞ ¼ � oQ
or

ðr; tÞ

¼
Z

Sr

e�ct 1

2

X
a¼s;f ;g

qa
0 _uu

a
i ðtÞ _uua

i ðtÞ
"

þ EðuðtÞÞ
#

da

þ
Z t

0

Z
Sr

e�cz c
1

2

X
a¼s;f ;g

qa
0 _uu

a
i ðzÞ _uua

i ðzÞ
"(

þ EðuðzÞÞ
#
þ UðuðzÞÞ

)
dadz: ð67Þ
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At this time we use Schwarz’s inequality and the arithmetic–geometric mean inequality in order to get

oI
ot

ðr; tÞ6
Z

Br

e�ct �6

2

X
a¼s;f ;g

qa
0 _uu

a
i ðtÞ _uua

i ðtÞ
"

þ 1

2q0�6

X
a¼s;g

ta3iðtÞta3iðtÞ
 

þ ~ttf3iðtÞ~ttf3iðtÞ
!#

dv

þ 3lm

2

Z
Sr

e�ct _uuf
i ðtÞ _uuf

i ðtÞda; �6 > 0: ð68Þ

If we set

�6 ¼ c1; ð69Þ

from the relation (55), we deduce

oI
ot

ðr; tÞ6 c1

Z
Br

e�ct 1

2

X
a¼s;f;g

qa
0 _uu

a
i ðtÞ _uua

i ðtÞ
"

þ EðuðtÞÞ
#

dv þ a
2

Z
Sr

e�ctqf
0 _uu

f
i ðtÞ _uuf

i ðtÞda: ð70Þ

By taking into account the relations (66) and (67) in (70), we obtain the inequality (62) and the proof is
complete. �

Theorem 5 (Asymptotic spatial behavior). Let P 2 M be a dynamic process, associated with a mixture for
which km ¼ lm, on the semi–infinite cylinder B, corresponding to external given data F. Then, for each fixed
t 2 ½0; T 
, we have

Iðr; tÞ6 max
z2½0;t


Ið0; zÞ
� �

exp
c1

2a
r

n o
Gðr; tÞ; ð71Þ

where

Gðr; tÞ ¼ 1

2
ffiffiffiffiffiffi
ap

p
Z t

0

rz�3=2 exp

�
� r2

4az

�
þ c2

1

4a
z
��

dz: ð72Þ

Proof. If we make the following change of function:

Iðr; tÞ ¼ exp

�
� c2

1

4a
t
�

exp
c1

2a
r

n o
Jðr; tÞ; ð73Þ

then, we can write the relation (62) in the form

oJ
ot

ðr; tÞ6 a
o2J
or2

ðr; tÞ; r 2 ½0;1Þ; t 2 ½0; T 
: ð74Þ

It follows from the relations (60), (61), (73) and (74) that Jðr; tÞ satisfies

a
o2J
or2

ðr; tÞ � oJ
ot

ðr; tÞP 0; r 2 ½0;1Þ; t 2 ½0; T 
;

Jðr; 0Þ ¼ 0; r 2 ½0;1Þ

Jð0; tÞ ¼ exp
c2

1

4a
t

� �
Ið0; tÞP 0; t 2 ½0; T 
;

Jðr; tÞ ! 0 ðuniformly in tÞ as r ! 1:

ð75Þ
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By using the maximum principle for parabolic differential equations (see Protter and Weinberger, 1967), we
get

Jðr; tÞ6wðr; tÞ; r 2 ½0;1Þ; t 2 ½0; T 
; ð76Þ

where wðr; tÞ is the solution for the following one-dimensional heat equation

a
o2w
or2

ðr; tÞ � ow
ot

ðr; tÞ ¼ 0; r 2 ½0;1Þ; t 2 ½0; T 
;

wðr; 0Þ ¼ 0; r 2 ½0;1Þ

wð0; tÞ ¼ exp
c2

1

4a
t

� �
Ið0; tÞP 0; t 2 ½0; T 
;

wðr; tÞ ! 0 ðuniformly in tÞ as r ! 1:

ð77Þ

The solution of such a problem is given by Tikhonov and Samarskii (1964, p. 208)

wðr; tÞ ¼ a
2
ffiffiffi
p

p
Z t

0

r

½aðt � zÞ
3=2
exp

�
� r2

4aðt � zÞ

�
exp

c2
1

4a
z

� �
Ið0; zÞdz: ð78Þ

From the relations (73), (76) and (78), we obtain the estimate (71) and the proof is complete. �

From the relation (71) we can obtain various estimates for Iðr; tÞ by using estimates for the function
Gðr; tÞ. Some estimates for a function like Gðr; tÞ are established by Horgan et al. (1984). Using the estimate
deduced by Scalia (2002)

Gðr; tÞ6
2rðat=pÞ1=2

exp � ðc2
1=4aÞt

! "
r2 � c2

1t2
exp

�
� r2

4at

�
; for r > c1t; ð79Þ

we obtain the following.

Theorem 6. Assume the hypotheses of Theorem 5 hold true. Then, for each r 2 ð0;1Þ, r > c1t, we have

Iðr; tÞ6 max
z2½0;t


Ið0; zÞ
� �

1

r2 � c2
1t2

2r
at
p

� �1=2

exp

�
� c2

1

4a
t
�

exp
c1r
2a

�
� r2

4at

�
: ð80Þ

For r > c1t, the spatial decay estimate (80) proves explicitly that, for all fixed t 2 ½0; T 
, the decay rate is
controlled by the factor expð�r2=4atÞ for large distances to the support of the external given data. Such a
decay rate is similar to that found by Horgan et al. (1984) for heat conduction equation and Scalia (2002)
for thermoelastic materials with voids.

At large distances of the support of the external given data, the spatial decay of processes is influenced
only by the coefficients of the fluid.

In the theory of mixtures of elastic solids asymptotic behavior of solutions were studied by Dafermos
(1976), Martinez and Quintanilla (1995) and spatial behavior by Pompei and Scalia (1999).
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