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Abstract

This paper is concerned with the study of the spatial behavior of the processes associated with a mixture consisting of
three components: an elastic solid, a viscous fluid and a gas. An appropriate time-weighted surface power function is
used in order to describe the spatial behavior of the processes in question. Spatial estimates of Saint—Venant type (for
bounded bodies) and Phragmen-Lindelof type (for unbounded bodies) with time-dependent and time-independent rates
are established. For unbounded bodies the asymptotic spatial behavior of the processes is also studied by means of an
appropriate volumetric measure.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The continuum theory of mixtures are extensively studied in literature. A presentation of the work on the
subject can be found in review articles by Bowen (1976), Atkin and Craine (1976a,b), and Bedford and
Drumbheller (1983).

Eringen (1994) pointed out the importance of the theory of mixtures to the applied field of swelling. In
this connection Eringen (1994) has developed a continuum theory of swelling porous elastic soils as a
continuum theory of mixture for porous elastic solids filled with fluid and gas. The theory provides a
fundamental basis for the treatment of various practical problems in the field of swelling, oil exploration,
slurries and consolidation problems. The theory is relevant to problems in the oil exploration industry,
since oil is viscous and is usually accompanied by gas in underground rocks, porous solid in slurries and
muddy river beds.

In the context of theory of swelling porous elastic soils some continuous dependence and uniqueness
results have been established by Gales (2002).
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This article is concerned with the study of spatial behavior in the isothermal linear theory of swelling
porous elastic soils.

The study of spatial decay and growth of solutions of time-dependent problems is of relatively recent
origin (see e.g. Edelstein, 1969; Knowles, 1971; Flavin and Knops, 1987; Iesan and Quintanilla, 1995;
Chirita and Ciarletta, 1999; Chirita and Scalia, 2001 and the references cited by Horgan and Knowles,
1983; Horgan, 1989). Chirita and Ciarletta (1999) were presented a method for the study of spatial be-
havior in dynamics of continua. The method is based on a set of properties for an appropriate time-
weighted surface power function associated with the dynamic processes. In linear elastodynamics and
viscoelastodynamics, there are obtained spatial decay estimates with time-independent decay rate inside of
the domain of influence, while for models which implies the presence of a dissipation energy (see also
Chirita and Danescu, 2000; Chirita and Scalia, 2001), there are obtained spatial estimates characterized by
independent as well as time-dependent decay and growth rates.

Our analysis in the present paper is based on the results obtained by Chiritd and Ciarletta (1999) and
Chirita and Scalia (2001). Since for the model in question there exist a dissipation energy we obtain spatial
decay and growth estimates characterized by independent and time-dependent rates. Thus, for bounded
bodies we establish spatial decay estimates of Saint—Venant type, while for unbounded bodies we establish
some alternatives of Phragmen-Lindelof type. We also outline a class of mixtures for which we can improve
the spatial decay estimates by studying the asymptotic behavior of the processes by means of an appro-
priate volumetric measure. A similar measure has been used by Scalia (2002) to study the asymptotic spatial
behavior in linear thermoelasticity of materials with voids. The results are obtained under positive defi-
niteness assumption upon the internal energy density.

The plan of the paper is as follows: In Section 2 we set down the basic equations and we discuss some
restrictions upon the constitutive coefficients. Section 3 contains the derivation of some general properties
of an appropriate time-weighted surface power function associated with the mixture and some results that
describe the spatial behavior of processes for bounded and unbounded bodies. Section 4 examines the
asymptotic spatial behavior of processes.

2. Basic equation—some preliminary results

We refer the motion of a continuum to a fixed system of rectangular Cartesian axes Ox; (k =1, 2, 3). We
shall employ the usual summation and differentiation conventions: Latin subscripts are understood to
range over integer (1, 2, 3), summation over repeated subscripts is implied, subscripts preceded by a comma
denote partial differentiation with respect to the corresponding Cartesian coordinate, and a superposed dot
denotes time differentiation.

We consider a body that at time ¢ = 0 occupies the bounded or unbounded regular region B of Euclidean
three-dimensional space whose boundary is the regular surface 0B.

We assume that B is occupied by a mixture consisting of three components: an elastic solid, a viscous
fluid and a gas. We use superscripts s, f, g to denote respectively, the elastic solid, the fluid and the gas. Let
pb, ph and p§ denote the densities at time 7 =0 of the three constituents, respectively. We consider the
fundamental equations for mechanical behavior of the mixture in the framework of the linearized theory
(see Eringen, 1994; Gales, 2002). Thus, the equations of motion are

£ .
t;i,j + p(slf;'s +p; erig = p(s)u,s'v
ts+ oof! = pl = phi, (1)
ti; + Pofi — pi = poiy,  in B x [0,00),

where £, f, and #; are the partial stress tensors, 7, /| and ff are the body forces, u}, u} and uf are the

displacement vector fields, and pf and pf are the internal body forces.
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The constitutive equations for a homogeneous and isotropic mixture are

tlsj = < — Z gaef,, + /lef,r> 5[] —+ 2#3?],7

a=f,g
f _ f s E fa a 7 of - f
tij - < -0 err - o err + AVerr) 5if + ‘/Zluveij7
)
g __ _ g8p8 _ § 8a ,a ..
tij - oe,, o° e, 61.17
a=f,g

pfzz:gab(ulb_uls)’ a:fvg inEX[O,oo),
b=fg
where ¢* (a =f,g), 4, u, 0 (a,b =1,g), 4, W, &% (a,b = f, g) are constitutive constants; 0;; is the Kro-
necker delta; and e efj and e?j are defined by

e =5}, +us,),
efj = %(”:f,j + ”j-,,-)> 3)

ef =3(uf; +us;), in B x[0,00).

The coefficients in (2) have the following symmetries:
o =g =" ab=fg 4)

Let M and N be non-negative integers. We say that / is of class C*V on B x [0, 00) if / is continuous on
B x [0,00), and the functions

o 0"h
| = |, €e{0,1,...,.M}, ne{0,1,... N}, < max{M,N},
axiaxj . axr < or" ) m { } n { } m+n X{ }
exist and are continuous on B x [0,00). We denote C¥¥ by C™.
Throughout this paper by an admissible process we mean the ordered array 2 = {u’,u’, ué; e° e’ e%; t°,
t',t&; pf,pt} with the properties

(a) u, u, uf are of class C'? on B x [0,00);
(b) the symmetric fields €};, e, e, are of class C*' on B x [0, 00);
(c) the symmetric fields £, 7, #;; are of class C' on B x [0, 00);

(d) pf, pf are of class C° on B x [0, 00).

Further, we say that 22 = {u’,u’,ug; ¢*,ef,e% t* t' ¢ p',p¢} is a dynamic process for the mixture
corresponding to body forces f*, f' and f2 if 2 is an admissible process and satisfies the basic equations (1)—
(3). To the dynamic process & we associate the surface tractions s? (o = s, f, g) defined at every regular
point of a boundary surface by

S?(X, t) - t_;(i(x7 t)nj(x)a a=s,f,g, (5)

where n; are the components of the outward unit normal vector to the boundary surface of a region. We call
the array % = {f* ' f%;s° s’ s¢} the external force system for 2.
As it was shown by Eringen (1994), the local form of the Clausius—Duhem inequality implies

3 4+2u,=0, pu >0, (6)
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and the positive semi-definiteness of the following symmetric matrix:

_ 6ff éfg
A= <€fg égg ’ (7)
so that the dissipation energy density ®, corresponding to the displacement vectors u = [u*,u’, u¢] and
defined by

®(u) = 4,&} (wel (u) + 20,8 (wel (w) + S &Gl — i) (@ — i), (8)

is non-negative.
The internal energy density & corresponding to the displacement vectors u = [u®, u, u¢] is defined by

& = 376, 0) + el w)eyw) — 3 ceu)e ) — 3 3 ael(w)e (w). (9)

a=fg ab=f.g

Throughout this paper we shall assume that the following symmetric matrix is positive definite:

A42u A A 0 0 0 -6 -0t

A A+ 2u Y, 0 0 0 —0o —of

A A A+2n 0 0 0 —o6f —g¢

5 0 0 0 2u 0 0 0 0 (10)

0 0 0 0 2u O 0 0
0 0 0 0 0 2u O 0

—af —of —of 0 0 0 —off —oft

—ot —gt —ot 0 0 0 —oft —ge

Thus, the internal energy density &'(u) is a positive definite quadratic form in terms of ¢}(u), e’ (u) and
¢%(u). Then, we have

7.8 8 s s a_a s ab a b S s f f g g
Je;e; + 2pe e — 2 E a'ege;; — E aeze; <oml(eje;; + e e+ eger), (11)
a=f.g ab=f.g
where
oV = 35M7 (12)

and Jy is the largest eigenvalue of the matrix 0. In order to get the relation (11) we have been used the
relation

ex(u)ef(u) < 3ej(w)ef(u), a=f,g. (13)

it Jj ij

Lemma 1. Let 2 be an admissible process for the mixture satisfying the constitutive equations (2). Then, for
every positive €, we have

Z (e (w) <2(1 + e )omé (u) + <l + j)u}w {/lvéfi(u)éﬁj(u) + ZuVéfj(u)éfj(u) ) (14)

where

py = max{2p,, 32, + 2u, }. (15)
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Proof. From the relations (2)—(4), (6), (10) and (11) we deduce
Z tf‘](u)tl‘/(u) = Je;;(u ) ( )+ 2ﬂe Z o'e (u) - Z O'ae?i(u)t;j(w - Z O'aheg(u)t;j(u)

o=s.f.g a=f.g a=f.g a=f.g

e ()i () + 201,85 (w) () < [ie?,-(u)ej-j(u) + 2ue (w)e () —2 3 o (u)e, (w)

1/2 12
- a“bez<u>efj<u>] o (1 )y o) 2 ) ) 2 )i )]

ab—f.g
+ [het el ) + 28 el ] [t ey w)] (16)

so that, by (9), we get
> < {owe + [, (22 e, @) + 20 e w)| /} (7

Using the arithmetic—geometric mean inequality
€ - 1
ar < —a a 18
1S 5 d + 26, (18)

which holds for every ¢; > 0 and every a; and a,, we obtain the relation (14) and the proof is complete. [J
By using the fact that the symmetric matrix A is positive semi-definite, we obtain the following:

Corollary 1. If 2 is an admissible process for the mixture satisfying the constitutive equation (2), then for
every positive €|, we have

Z s7s¥<2(1 + € )omé(u) + (l +€l>,u};,l(l)(u). (19)

a=s,f,g

3. Spatial behavior for bounded and unbounded bodies

In this section we establish some estimates describing spatial decay and growth properties for dynamic
processes associated with the mixture. We define and establish some properties of the time-weighted surface
power function associated with the dynamic process 22, then we derive the mentioned results.

We consider a glven time interval [0, 7], T € [0, o0). Given the dynamic process #, corresponding to the
external force system %, we introduce the set Dy of all points in B so that:

(1) if x € B then

u¥(x,0) #0 or u¥(x,0)#0 forsome o € {s,f,g}, (20)
or
fix,1) #0 or fi(x,1) #0 or fE(x,7)#0 for some t € [0, 7], (21)
(i) if x € 0B then
Z sH(x, )il (x,7) #0 for some 7 € [0, T]. (22)

o=s,f.g
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Roughly speaking, Dy represents the support of the initial and boundary data and the body forces on the
time interval [0, 7. If the region B is unbounded, then we will assume that Dy is a bounded region.
We consider next a nonempty set D} of B such that Dy C D} C B and

(1) 1If Dr N B # (), we choose D* to be the smallest regular region in B that includes Dr;in particular, we set
D} = DT if Dy happens to be a regular region;

2) If 0) 4Dy C 0B, we choose D* to be the smallest regular subsurface of dB that includes Dy; in partic-
ular we set D = DT if DT 1sa regular subsurface of 0B;

(3) If Dy is ernpty, then we choose D* to be an arbitrary regular subsurface of 0B.

On this basis we introduce the set D,, » = 0 by
D, = {x B DFNE(x.1) #0}, (23)

where X(x,r) is the open ball with radius r and center x. We shall use the notation B, for the part of B

contained in B \ D, and we set B(ry,r,) = B,, \ B,,, r1 > r,. Moreover, we shall denote by S, the subsurface

of 0B, contained into inside of B and whose outward unit normal vector is forwarded to the exterior of D,.
We note that for a bounded body r ranges over [0, L], where

L = max{min{[(x; — y;) (x; yl«)]l/2 'y e B;‘} : X € B}. (24)

We associate with the dynamic process 2 the following time-weighted surface power function Q(r, )
defined by

/ /e s sH(2)il(z)dadz, r=0, t€][0,7], (25)
S,

a=s,f,g

where s7, o =s, f, g are defined by the relation (5) and y is a prescribed positive parameter. Further, we
introduce, for later convenience, the notation

@mg—lbm@&. (26)

The next theorem shows a set of properties of the time-weighted surface power function that are useful in
the study of the spatial behavior of the dynamic processes. The results give rise to counterparts of the
thermoelastic versions established by Chirita and Ciarletta (1999).

Theorem 1 (Properties of the time-weighted surface power function Q). Let 2 = {u’,u’ u¢; ¢, el es; t° tf
t&; p', pe} be a dynamic process for the mixture on B corresponding to the external force system F and let DT
be the bounded support of the corresponding data on the time interval [0, T|. Then the time-weighted surface
power function Q(r,t) has the following properties:

(Q)) Foreacht€[0,T] and 0<r<ry

Q(rl,t)—Q(rz,t)*—/ [ S7 o ()i (e) + E(u(e)) | do

o=s,f,g

// H S (i) + 6u(:)

a=s.f,g

+¢mm}@¢; (27)
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(02) O(r,t) is a continuous differentiable function on r =0, t € [0, T], and

Sovn=- [« l 3 A 00 + 6100 | da
_/Ot/se'ﬂ{v[ Z poit z) + &(u(z)) +(I)(u(z))}dadz; (28)

(03) For each fixed t € [0,T), O(r,t) and Q(r,t) are non-increasing functions with respect to r;
(O4) O(r,t) satisfies the following first-order differential inequality:

0
%|Q(r,t)|+5Q(r,t)<O7 r>0, te0,1], (29)
where
2om + Vi P
NETOMa pO = mln{poapgapg}; (30)

(0s) é(r, t) satisfies the following first-order differential inequality:

0 ~ _
Vik({) 5 0(r.0) + 10(-)| <0, G1)
where
2tO'M —+ ,Lliv[
k(t) = T% (32)

(Q¢) If B is a bounded body, then Q(r,t) and Q(r, t) are positive functions.

Proof. In view of the relations (2)~(5), (25), the definition of Dy and the divergence theorem we get

O(r1,8) — O(ra, 1) / / e sf‘ (2)i?(z)dadz
0B(r1,r2) a=sf,g

// e 3 [0 + e 0] v (33)

Further, we use the basic equations (1)—(3) and the relations (8) and (9) in order to obtain

0(r1,1) — O(r2,1) // { [ S pri ()i (2) + & (u(z)

o=s,f,g

+ (D(u(z))} dodz,  (34)

which by means of an integration by parts and the definition of Dy leads to the identity (27), and so the part
(Qy) is established.

Part (Q,) and (Q;) follows from the definition of the dynamic process and the property (Q).

We now establish the property (Q4). On the basis of the Schwarz’s inequality, the arithmetic-geometric
mean inequality (18) and Corollary 1, from (25), we obtain
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st ()i} (2)

O(r,1)| //e’z
a=s.f.g

/ /s,e vz [_ poil (2)i (z) + ZGipo az sf(z)sf.‘(z)] dadz

dadz

a=s./.g =s5./.&
1
ypoutl (2)i} (z) + 29(1 4+ &3)om & (u(z
<[ [« { S 3 W)+ 20+ ) a)
1
+y<1+—)ulvvl(l)(u(z))}}dadz, Ve, >0, €5 >0, (35)
€3

where p, is defined by the second term of (30),. Now we equate the coefficients of the various energetic
terms in the last integral in (35), that is, we set

e_(teajom (1+1/e)my

y €200} 2629 (0
Therefore, we choose for the arbitrary parameters ¢, and e; the following values:
6 =c, € = %, (37)

where ¢ is given by the first term of (30);. With these choices substituted in (35) and by using the relation
(28) we deduce the first-order differential inequality (29).
We consider now the part (QOs). By means of the Schwarz’s inequality and the relation

/ / d‘cdz<t/t ()dz, N
from (26), we get
/ / /e Y si(n)id(t) dadrdz| < <\/;/0t/ e S dadz> 12

u=s.fg a=sf.g
([ [ ek 5 semome)
(39)

Moreover, we use the arithmetic-geometric mean inequality and the Corollary 1 in (39) in order to obtain

10(r1)| < {/ /Sre #EST i (2)i(z) dads

rt|f

P
+/0t /0 /Sreyrzewo [2(1+65)0M¢§’(u(1’)) <1+€15) (I)(u(r))] dadrdz}
<J{/ L [ > ou?<z>u?<z)+w(g<u<z»] dad:

(I+1
+ 1/es) ,uM/ / /e [ dadfdz} Ves >0, €5 > 0. (40)
2e4pg
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Then, we equate the coeflicients of the various energetic terms in the last inequality of the relation (40), that
is we set

I
= k(t = 41
€4 ()a €s 2l‘O'M7 ( )

where k(¢) is given by the relation (32). If we combine the inequality (40) with the choices (41) and the
property (Q,) we obtain the estimate (31). Thus, the property (Qs) is established.

We proceed now to establish (Qg). The definition of Dy together with the relations (24) and (25) then
show that

o(L,t)=0, te€][0,T]. (42)

The part (Qs) follows now from the relations (26) and (27) by means of the use of the relation (42). Thus,
the proof is complete. O

Theorem 2 (Spatial behavior for bounded bodies). Let 2 = {u u' ug; et el ef; t5t1 2 pl pe} be a dy-
namic process for the mixture on the bounded regular region B, correspondmg to the exlernal force system

= {1 f5; &°,s,s¢}. Suppose that the external given data have the bounded support Dy on the time in-
terual [0, T] and let QO(r,t) be the time-weighted surface power function associated with 2. Then, for each fixed
t €[0,7T], we have

O(r,t) < 0(0, ) exp ( - £r> re0,L] (43)

and

~ 1
! O ! - B S OaL7 44
01 < Q0.0 exp (~—r). refoul (#4)
where ¢ and k(t) are given by (30) and (32), respectively.

Proof. By means of the property (Qs) the relations (29) and (31) can be written in the following form:

%{exp(%r)Q(r,t)}go, r e [0,L], (45)
a{ (\/k()> o, t)}SO, re o, (46)

By an integration with respect to r, we obtain the estimates (43) and (44). Thus, the proof is complete. [

We now consider an unbounded body so that we assume that B is an unbounded regular region. We
derive some results of Phragmen—Lindelof type as it is described in the next theorem.

Theorem 3 (Spatial behavior for unbounded bodies). Let 2 = {u’,u’,ug; ¢*,ef, es; t5,t' t&; p',p¢} be a
dynamic process for the mixture on the unbounded region B, correspondmg to the external force system
F = {1 15, s s’ st}. Suppose that the external given data have the bounded support Dy on the time in-
terval [0, T and let O(r,t) be the time-weighted surface power function associated with 2. Then, for each fixed
t € [0,T], the following alternative holds:

(i) either Q(r,t) = 0 for all r = 0 and then
0(r,1) < 0(0,1)exp ( — ir) r>0, (47)
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or
(ii) there exists a value r, = 0 so that Q(r,,t) < 0 and then Q(r,t) < 0 for all r = r, and

A

~0(r) > = Qrexp (L(r=n)), r>r (48)
Proof. Let ¢ be fixed in [0, T]. Then it results, from the property (Qs), that we have only the following two
possibilities:

(a) O(r,t) =0 for all r € [0, 00);
(b) there exists 7, € [0, 00) such that O(r,,t) < 0.

Let us consider the first possibility; that is, we assume Q(r, #) = 0 for all » € [0, 00). Then the differential
inequality (29) can be written in the form (45) and so we get the estimate (47).

Let us now consider the case (b). Then, we have O(r,¢) < O(r;, 1) < 0 for all > r, so that the differential
inequality (29) implies that

1 0
—éQ(r, 042000 <0, r>n. (49)
Thus, by an integration, from (49), we obtain the estimate (48) and the proof is complete. [J
A similar argument with that in the above proves the following theorem:
Theorem 4. Suppose the hypotheses of Theorem 3 hold true. Then, for each t € [0, T), either

(i) O(r,t) =0 for all r = 0 and then

O(r,1) < 0(0, 1) exp ( - \/%(t)r) r>0, (50)

or
(ii) there exists a value r* =0 so that Q(r*,1) < 0 and then Q(r,t) <0 for all r > r* and

000> ~ 00t e (=it rEt (51)

Remark 1. It is worth to mention that one can obtain a good description for the spatial behavior of dynamic
processes by combining the results described by the estimates (43) and (44) or, alternatively, the estimates
(47) and (50). The decay estimates (44) and (50) are useful for short values of time, while the decay estimates
(43) and (47) give a good description for large values of time.

4. Further asymptotic spatial behavior

In this section we outline a class of mixtures for which we can complete the study of spatial behavior with
some results describing the asymptotic spatial behavior of the processes. In this aim we adopt a volumetric
measure for the processes derived from (25) and then we establish some spatial decay estimates by using
qualitative methods involving second-order partial differential inequalities. The results give rise to coun-
terparts of thermoelastic versions of those established by Horgan et al. (1984) for the transient heat con-
duction and Scalia (2002) for materials with voids.
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We assume that B is a semi-infinite cylinder and we choose the rectangular Cartesian system so that the
generators of the cylinder are parallel with the x3;-axis and the end of cylinder is contained in the plane

x3 = —1, I > 0. Further, we suppose that the support of the external given data Dy is enclosed in the half—
space x3 < 0. Throughout in what follows we assume that

W =0 on (3By—Sp) x [0,7T]. (52)

We note that the constitutive equations (2) allow us to write

£ A

£ =1 +17, (53)
where

< _|_ Z O_fa a) >
a=f,g
il.fj = /’Lvé}f,réij + Zﬂ‘efj (54)

It is easy to see that the procedure used to obtain the estimate (14) can be applied to obtain the estimate

D ) (u) + 7 () (1) < 20m8 (u). (33)

4=s,g

Within the above context the time-weighted surface power function Q(r,¢) defined by the relation (25)

becomes
- [ [ S i (e) + iz >af<z>] dad:
=S,
/ / e 8 (2)il (z)dadz, r€[0,00), t€[0,T]. (56)
By using the relations (52), (54), and the divergence theorem, we obtain
1
/ £l da = / (A — p,)itsit da + = { / {,u‘ulfulf + (4 + 1, )u3u3} da} . (57)
S, S, - 20 Js 3
It follows from the relation (57) that in the class of fluids for which
/1 = H,y, (58)

the function Q(r, ) can be written as

/ /S € ’letii(Z)it?‘(Z) +i§,.(z)a§(z)1 dadz
{/ /e {”f (2) + 203 (2)i ()] dadz} , (s9)

3
We denote by .# the class of processes £ for which Q(r, ) = 0 for r € [0,00), ¢ € [0, T] and (52) is satisfied.
For the processes £ residing in the set .# it follows by Theorem 3 that the estimate (47) holds true. Thus,
we can introduce the following measure:

I(r,t) = /OO 0(&,ndé, rel0,00), te0,T], (60)
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B /0[ /Br e [ Z ty(2)u} (z) + fg,(z)uf(z)] dvdz

0=s,g

/ /e lu 2) + 20k ()i ()1 dadz. (61)

Lemma 2. Let P € U be a dynamic process, associated with a mixture for which 1, = u,, on the semi—infinite
cylinder B, corresponding to external given data F . Then, the volumetric measure I(r,t) satisfies the following
second-order partial differential inequality

that is

ol o/ I

a(rat)g_cla(rvt) az(rt) VE[0,00), te[ovTL (62)
where
= J—M, a= 3'1?'. (63)
Po Po

Proof. By a direct differentiation in (61), we deduce that

0 .
arn=-[¢ [Zt i () + 74 )uf(t)] avde 41 [ e laf() (1) + 2id (i (1) | dadz.
(64)
Further, the relation (47) gives
lim O(r,1) = 0, (65)
so that, by means of the relations (27), (28), and (60), we obtain
ol "
Grn=-orn=-[& [ ;S;gp )+ ()| do
_/ /e ﬂ{ l 3 i ()i () + Eu(z)) —HD(u(z))}dvdz, (66)
0 o=s,f,g
and
o’ 00
@(r,t) = —E(r,t)
/[ S° pric (0 (e) + E(u(r))| da
a=s,f,g
+/0 /S e"z{ [ O;gp z) + &(u(2)) —I—(D(u(z))}dadz. (67)
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At this time we use Schwarz’s inequality and the arithmetic—geometric mean inequality in order to get

Zi (r,t) < / [66 Z pi : 2p066 <Zt3l V() + B (OB (1 )>] dv

o=s.f.g o0=s,g
+3”" RHOUAGL 0 68
2 )°© ()i (1) da, € > 0. (68)
If we set
€ = C|
) (69)
from the relation (55), we deduce
ol oyt a gt Fefp el
a(r,t)ém e Zp t) + &(u(z)) dv+§ Se poit; ()i; (1) da. (70)
o=s,f,g -

By taking into account the relations (66) and (67) in (70), we obtain the inequality (62) and the proof is
complete. O

Theorem 5 (Asymptotic spatial behavior). Let 2 € . be a dynamic process, associated with a mixture for
which 1, = p,, on the semi—infinite cylinder B, corresponding to external given data F . Then, for each fixed
t €[0,T], we have

C1
< i
1(r,0) < (52[%?1(0 z)) exp { - r}G(r, 0, (71)
where
1 t 3 1"2 C2
— -3/2 4 2
G(r,1) NG Orz exp{ (4az+4a)}dz' (72)
Proof. If we make the following change of function:
2
_ _a a
1(r,1) = exp { = r} exp { Zar}J(r, 0, (73)
then, we can write the relation (62) in the form
2
Y rn<ain, refooo), refo.1] (74)

It follows from the relations (60), (61), (73) and (74) that J(r,¢) satisfies

2
Zi(rt) %{(r,t)?O, ref0,00), t€[0,T],

J(r,0)=0, rel0,00)
(75)

2
J(0,1) :exp{j—;t}l(o,t) =0, tel0,7],

J(r,t) = 0 (uniformly in ¢) as r — oo.
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By using the maximum principle for parabolic differential equations (see Protter and Weinberger, 1967), we
get

J(r,t) <w(r,t), rel0,00), te€]0,T], (76)
where w(r, f) is the solution for the following one-dimensional heat equation

0w ow
aw(r,t) _E(F’t) =0, rel0,00), t€][0,T],

w(r,0) =0, rel0,00)
2

w(0,7) = exp { :—lt}l(o, =0, tel0,T],
a

w(r,t) — 0 (uniformly in ¢) as » — oo.

The solution of such a problem is given by Tikhonov and Samarskii (1964, p. 208)

w(r,t) = 2\‘;% /Ot a(t _rz)]3/2 exp { - ﬁ } exp { %z}](o,z) dz. (78)

From the relations (73), (76) and (78), we obtain the estimate (71) and the proof is complete. [

From the relation (71) we can obtain various estimates for /(r,¢) by using estimates for the function
G(r,t). Some estimates for a function like G(r, ¢) are established by Horgan et al. (1984). Using the estimate
deduced by Scalia (2002)

2r(at/m)'"* exp { — (2 /4a)t :
G(r,t) < rlat/m) rzx_pc{ztz (ci/4a)} exp{ - 4r_at }, for r > ¢t, (79)
1

we obtain the following.

Theorem 6. Assume the hypotheses of Theorem 5 hold true. Then, for each r € (0,00), r > ct, we have

1 at\ 12 c? car
I(r0) < 10,2)) 5——2(%) _ay ar_r. 80
(r,1) <£‘1€1[%1)§ ( Z)> rt— 3 "\ & cxp { 4a' [P\ 20 dar (80)

For r > ¢t, the spatial decay estimate (80) proves explicitly that, for all fixed ¢ € [0, 7], the decay rate is
controlled by the factor exp(—r*/4at) for large distances to the support of the external given data. Such a
decay rate is similar to that found by Horgan et al. (1984) for heat conduction equation and Scalia (2002)
for thermoelastic materials with voids.

At large distances of the support of the external given data, the spatial decay of processes is influenced
only by the coefficients of the fluid.

In the theory of mixtures of elastic solids asymptotic behavior of solutions were studied by Dafermos
(1976), Martinez and Quintanilla (1995) and spatial behavior by Pompei and Scalia (1999).
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